Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Immunol ; 15: 1383456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660299

RESUMO

The programmed death-1 receptor (PD-1) acts as a T-cell brake, and its interaction with ligand-1 (PD-L-1) interferes with signal transduction of the T-cell receptor. This leads to suppression of T-cell survival, proliferation, and activity in the tumor microenvironment resulting in compromised anticancer immunity. PD-1/PD-L-1 interaction blockade shown remarkable clinical success in various cancer immunotherapies. To date, most PD-1/PD-L-1 blockers approved for clinical use are monoclonal antibodies (mAbs); however, their therapeutic use are limited owing to poor clinical responses in a proportion of patients. mAbs also displayed low tumor penetration, steep production costs, and incidences of immune-related side effects. This strongly indicates the importance of developing novel inhibitors as cancer immunotherapeutic agents. Recently, advancements in the small molecule-based inhibitors (SMIs) that directly block the PD-1/PD-L-1 axis gained attention from the scientific community involved in cancer research. SMIs demonstrated certain advantages over mAbs, including longer half-lives, low cost, greater cell penetration, and possibility of oral administration. Currently, several SMIs are in development pipeline as potential therapeutics for cancer immunotherapy. To develop new SMIs, a wide range of structural scaffolds have been explored with excellent outcomes; biphenyl-based scaffolds are most studied. In this review, we analyzed the development of mAbs and SMIs targeting PD-1/PD-L-1 axis for cancer treatment. Altogether, the present review delves into the problems related to mAbs use and a detailed discussion on the development and current status of SMIs. This article may provide a comprehensive guide to medicinal chemists regarding the potential structural scaffolds required for PD-1/PD-L-1 interaction inhibition.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Animais , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Anticorpos Monoclonais/uso terapêutico
2.
Curr Pharm Des ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638052

RESUMO

BACKGROUND: Friedreich's ataxia (FRDA) is a rare hereditary neurodegenerative disorder characterized by progressive ataxia, cardiomyopathy, and diabetes. The disease is caused by a deficiency of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and iron metabolism. OBJECTIVE: This review aims to summarize recent advances in the development of treatment strategies for FRDA, with a focus on potential drug candidates and their mechanisms of action. METHODS: A comprehensive literature search was conducted using various authentic scientific databases to identify studies published in the last decade that investigated potential treatment strategies for FRDA. The search terms used included "Friedreich's ataxia," "treatment," "drug candidates," and "mechanisms of action." RESULTS: To date, only one drug got approval from US-FDA in the year 2023; however, significant developments were achieved in FRDA-related research focusing on diverse therapeutic interventions that could potentially alleviate the symptoms of this disease. Several promising drug candidates have been identified for the treatment of FRDA, which target various aspects of frataxin deficiency and aim to restore frataxin levels, reduce oxidative stress, and improve mitochondrial function. Clinical trials have shown varying degrees of success, with some drugs demonstrating significant improvements in neurological function and quality of life in FRDA patients. CONCLUSION: While there has been significant progress in the development of treatment strategies for FRDA, further research is needed to optimize these approaches and identify the most effective and safe treatment options for patients. The integration of multiple therapeutic strategies may be necessary to achieve the best outcomes in FRDA management.

3.
Nanomedicine (Lond) ; 19(10): 855-874, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38440976

RESUMO

Aims: This study was aimed to formulate erlotinib (ERL)-loaded transferosomal gel (ERL@TG) intended for topical application for the treatment of ductal carcinoma in situ. Materials & methods: The optimized process involved a thin-film hydration method to generate ERL-loaded transferosomes (ERL@TFS), which was incorporated into a carbopol gel matrix to generate ERL@TG. The optimized formulation was characterized in vitro followed by cytotoxicity evaluation on MCF-7 breast cancer cell lines and acute toxicity and skin irritation studies was performed in vivo. Results: In a comparative assessment against plain ERL, ERL@TG displayed enhanced efficacy against MCF-7 cell lines, reflected in considerably lower IC50 values with an enhanced safety profile. Conclusion: Optimized ERL@TG was identified as a promising avenue for addressing ductal carcinoma in situ breast cancer.


Despite progress, breast cancer remains a significant cause of death. This study aimed to revolutionize the treatment of noninvasive ductal carcinoma in situ, a type of breast cancer, by developing a special gel that can be applied directly to the breast. The developed gel was in the nanoform, a 'nanotransfersomal' gel that contained erlotinib, a potent drug for breast cancer. To ensure its effectiveness, we evaluated the erlotinib-loaded transfersomal gel through various tests. The results confirmed that the gel was nano-sized and loaded with a high amount of erlotinib. Animal studies were conducted to check if the prepared gel caused any skin irritation and interestingly, there was no irritation observed on the animals' skin. Furthermore, we treated breast cancer cells with the developed gel using a method called MTT assay and the results showed improved cell-killing activity in comparison to plain drug. In conclusion, this special gel represents a breakthrough in breast cancer treatment. It offers hope for better outcomes in the fight against this disease. This innovative approach involves directly applying the gel on the affected area topically to increase patient compliance and decreasing side effects of drugs. This could potentially transform ductal carcinoma in situ breast cancer treatment, bringing us closer to improved treatments and outcomes.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Cloridrato de Erlotinib/uso terapêutico , Linhagem Celular Tumoral , Lipossomos , Neoplasias da Mama/tratamento farmacológico
4.
Sci Rep ; 13(1): 19869, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963936

RESUMO

Peroxisome proliferator-activated receptor-γ (PPAR-γ) partial agonists or antagonists, also termed as selective PPAR-γ modulators, are more beneficial than full agonists because they can avoid the adverse effects associated with PPAR-γ full agonists, such as weight gain and congestive heart disorders, while retaining the antidiabetic efficiency. In this study, we designed and synthesized new benzylidene-thiazolidine-2,4-diones while keeping the acidic thiazolidinedione (TZD) ring at the center, which is in contrast with the typical pharmacophore of PPAR-γ agonists. Five compounds (5a-e) were designed and synthesized in moderate to good yields and were characterized using spectral techniques. The in vivo antidiabetic efficacy of the synthesized compounds was assessed on streptozotocin-induced diabetic mice using standard protocols, and their effect on weight gain was also studied. Molecular docking and molecular dynamics (MD) simulation studies were performed to investigate the binding interactions of the title compounds with the PPAR-γ receptor and to establish their binding mechanism. Antidiabetic activity results revealed that compounds 5d and 5e possess promising antidiabetic activity comparable with the standard drug rosiglitazone. No compound showed considerable effect on the body weight of animals after 21 days of administration, and the findings showed statistical difference (p < 0.05 to p < 0.0001) among the diabetic control and standard drug rosiglitazone groups. In molecular docking study, compounds 5c and 5d exhibited higher binding energies (- 10.1 and - 10.0 kcal/mol, respectively) than the native ligand, non-thiazolidinedione PPAR-γ partial agonist (nTZDpa) (- 9.8 kcal/mol). MD simulation further authenticated the stability of compound 5c-PPAR-γ complex over the 150 ns duration. The RMSD, RMSF, rGyr, SASA, and binding interactions of compound 5c-PPAR-γ complex were comparable to those of native ligand nTZDpa-PPAR-γ complex, suggesting that the title compounds have the potential to be developed as partial PPAR-γ agonists.


Assuntos
Diabetes Mellitus Experimental , Tiazolidinedionas , Animais , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Hipoglicemiantes/farmacologia , Ligantes , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Agonistas PPAR-gama , Rosiglitazona/farmacologia , Aumento de Peso
5.
Anticancer Agents Med Chem ; 23(20): 2237-2247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37807646

RESUMO

BACKGROUND: Indenoisoquinoline-based compounds have shown promise as topoisomerase-I inhibitors, presenting an attractive avenue for rational anticancer drug design. However, a detailed QSAR study on these derivatives has not been performed till date. OBJECTIVE: This study aimed to identify crucial molecular features and structural requirements for potent topoisomerase- 1 inhibition. METHODS: A comprehensive two-dimensional (2D) QSAR analysis was performed on a series of 49 indenoisoquinoline derivatives using TSAR3.3 software. A robust QSAR model based on a training set of 33 compounds was developed achieving favorable statistical values: r2 = 0.790, r2CV = 0.722, f = 36.461, and s = 0.461. Validation was conducted using a test set of nine compounds, confirming the predictive capability of the model (r2 = 0.624). Additionally, artificial neural network (ANN) analysis was employed to further validate the significance of the derived descriptors. RESULTS: The optimized QSAR model revealed the importance of specific descriptors, including molecular volume, Verloop B2, and Weiner topological index, providing essential insights into effective topoisomerase-1 inhibition. We also obtained a robust partial least-square (PLS) analysis model with high predictive ability (r2 = 0.788, r2CV = 0.743). The ANN results further reinforced the significance of the derived descriptors, with strong r2 values for both the training set (r2 = 0.798) and the test set (r2 = 0.669). CONCLUSION: The present 2D QSAR analysis offered valuable molecular insights into indenoisoquinoline-based topoisomerase- I inhibitors, supporting their potential as anti-lung cancer agents. These findings contribute to the rational design of more effective derivatives, advancing the development of targeted therapies for lung cancer treatment.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Relação Quantitativa Estrutura-Atividade , Antineoplásicos/farmacologia , Redes Neurais de Computação
6.
Nanomedicine (Lond) ; 18(18): 1139-1160, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37665053

RESUMO

Aim: This study aimed to improve the delivery and therapeutic potential of gefitinib (GTB) against breast cancer by preparing GTB-loaded, nanostructured lipid carriers (GTB-NLCs). Materials & methods: Box-Behnken design was used for optimization and GTB was loaded into NLCs using ultrasonication. The GTB-NLCs were characterized using in vitro, ex vivo and in vivo studies. The anticancer efficacy of GTB-NLCs was evaluated using 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity and flow cytometry on MCF-7 breast cancer cell lines. Results: Optimized GTB-NLCs were successfully characterized and demonstrated improved internalization and enhanced cytotoxicity compared with plain GTB. Gut permeation studies showed enhanced intestinal permeability, and pharmacokinetic analysis revealed 2.6-fold improvement in GTB oral bioavailability. Conclusion: GTB-NLCs effectively enhanced the therapeutic potential of GTB against breast cancer.


Gefitinib is an important drug approved for the treatment of cancer. However, there are issues with gefitinib, including its low water solubility and toxicity. Being poorly water soluble, the absorption of gefitinib in blood is low and therefore high doses are required to achieve the therapeutic level. Also, gefitinib is nonselective for cancer as well as noncancer cells, leading to toxicity on other organs. This study aimed to incorporate gefitinib into a lipid-based carrier, which improved its properties such as solubility, stability and bioavailability. The prepared formulation was tested for its drug release, stability and efficacy on breast cancer cell lines as well as toxicity using various methods. It was observed that the prepared formulation not only improved bioavailability but also improved the targeting as more gefitinib entered the cancer cells when present in the formulation, decreasing the toxicity of gefitinib on other organs. In conclusion, the prepared formulation can be regarded as an effective approach to improving the therapeutic potential of gefitinib.


Assuntos
Neoplasias da Mama , Nanoestruturas , Humanos , Feminino , Portadores de Fármacos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Gefitinibe/uso terapêutico , Lipídeos , Tamanho da Partícula
7.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37776007

RESUMO

The hepatitis C virus (HCV), which causes hepatitis C, is a viral infection that damages the liver and causes inflammation in the liver. New potentially effective antiviral drugs are required for its treatment owing to various issues associated with the existing medications, including moderate to severe adverse effects, higher costs, and the emergence of drug-resistant strains. The objective of the current study was to utilize computational techniques to assess the anti-HCV efficacy of certain phytochemicals against tetraspanin (CD81) and claudin 1 (CLDN1) entry proteins. A 200-nanosecond molecular dynamics (MD) simulation was employed to examine the stability of the lead-protein complexes. Free binding energy and molecular docking calculations were conducted utilizing MM/GBSA method, and the selectivity of hit compounds for CD81 and CLDN1 was determined. Five significant CD81 and CLDN1 inhibitors were identified: Petasiphenone, Silibinin, Tanshinone IIA, Taxifolin, and Topaquinone. The MM/GBSA analysis of the compounds revealed high free binding energies. All the identified compounds were stable within the CD81 and CLDN1 binding pockets. This study indicated the promising inhibitory potential of the identified compounds against CD81 and CLDN1 receptors and might develop into potential viral entry inhibitors. However, to validate the chemotherapeutic capabilities of the discovered leads extensive preclinical research is required.Communicated by Ramaswamy H. Sarma.

8.
Food Funct ; 14(18): 8101-8128, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37650738

RESUMO

The utilization of plant-derived supplements for disease prevention and treatment has long been recognized because of their remarkable potential. Ananas comosus, commonly known as pineapple, produces a group of enzymes called bromelain, which contains sulfhydryl moieties. Recent studies have shown that bromelain exhibits a wide range of activities, including anti-inflammatory, anti-diabetic, anti-cancer, and anti-rheumatic properties. These properties make bromelain a promising drug candidate for the treatment of various diseases. The anti-inflammatory activity of bromelain has been shown to be useful in treating inflammatory conditions such as osteoarthritis, rheumatoid arthritis, and asthma, whereas the anti-cancer activity of bromelain is via induction of apoptosis, inhibition of angiogenesis, and enhancement of the body's immune response. The anti-diabetic property of bromelain is owing to the improvement in glucose metabolism and reduction in insulin resistance. The therapeutic potential of bromelain has been investigated in numerous preclinical and clinical studies and a number of patents have been granted to date. Various formulations and delivery systems are being developed in order to improve the efficacy and safety of this molecule, including the microencapsulated form to treat oral inflammatory conditions and liposomal formulations to treat cancer. The development of novel drug delivery systems and formulations has further ameliorated the therapeutic potential of bromelain by improving its bioavailability and stability, while reducing the side effects. This review intends to discuss various properties and therapeutic applications of bromelain, along with its possible mechanism of action in treating various diseases. Recent patents and clinical trials concerning bromelain have also been covered.


Assuntos
Artrite Reumatoide , Asma , Humanos , Bromelaínas/farmacologia , Bromelaínas/uso terapêutico , Apoptose , Disponibilidade Biológica
9.
Front Pharmacol ; 14: 1149554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274111

RESUMO

Breast cancer being one of the most frequent cancers in women accounts for almost a quarter of all cancer cases. Early and late-stage breast cancer outcomes have improved dramatically, with considerable gains in overall survival rate and disease-free state. However, the current therapy of breast cancer suffers from drug resistance leading to relapse and recurrence of the disease. Also, the currently used synthetic and natural agents have bioavailability issues which limit their use. Recently, nanocarriers-assisted delivery of synthetic and natural anticancer drugs has been introduced to the breast cancer therapy which alienates the limitations associated with the current therapy to a great extent. Significant progress has lately been made in the realm of nanotechnology, which proved to be vital in the fight against drug resistance. Nanotechnology has been successfully applied in the effective and improved therapy of different forms of breast cancer including invasive, non-invasive as well as triple negative breast cancer (TNBC), etc. This review presents a comprehensive overview of various nanoformulations prepared for the improved delivery of synthetic and natural anticancer drugs alone or in combination showing better efficacy and pharmacokinetics. In addition to this, various ongoing and completed clinical studies and patents granted on nanotechnology-based breast cancer drug delivery are also reviewed.

10.
J Pharm Bioallied Sci ; 15(1): 29-34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313539

RESUMO

Background: One of the imperative progressions within the pharmaceutical industry, especially drugs, is the expanded utilization of materials in order to enhance its dissolution, solubility and bioavailability. Planetary ball monomill approach can be the latest entrant to Green nanotechnology - being solvent-free, eco-friendly, cost-effective, and sustainable particle size reduction approach. Objectives: Salicylic acid nanopowder (SA-NP) was aimed to be prepared using planetary ball monomill by dry milling technique to enhance its solubility and bioavailability. Methods: Various milling parameters such as milling speed, milling time and number of balls was varied and their effect on dependent responses including size (nm) and polydispersity indices (PDI) were evaluated using a 3-Factorial-3-Level Box-Behnken statistical design. Particle size and PDI analysis was performed using light scattering technique. Results: The particle size of salicylic acid obtained by optimizing the dry milling parameters was Z-Average (d.nm): 776.3 nm and PDI: 0.600 up to Z-Average (d. nm): 205.0 nm and PDI: 0.383. Conclusions: Dry milling can be used for the preparation of nanopowders of drug candidates with poor water-solubility issues. Present day medications have nano-scaled active ingredients which are rapidly absorbed by the human body as compared to the conventional ones. Enlarged surface area increases the solubility of the drug, thereby improves its bioavailability.

11.
Front Pharmacol ; 14: 1133809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969847

RESUMO

Currently, acetylcholinesterase (AChE) inhibiting drugs in clinical use, such as tacrine, donepezil, rivastigmine, and galanthamine, are associated with serious side effects and short half-lives. In recent years, numerous phytochemicals have been identified as inhibitors of cholinesterases with potential applications in the management of Alzheimer's disease (AD). In this study three natural coumarins, 2'-O-ethylmurrangatin (1), murranganone (2), and paniculatin (3) isolated previously by our group from the leaves of Murraya paniculata, were tested against the two cholinesterases (ChE) enzymes, AChE and butyrylcholinesterase (BChE) using in vitro assay. Molecular docking was performed to highlight the structural properties that contribute to the molecular recognition pattern in the inhibition of ChE and the structural differences resulting in the selectivity of these compounds toward AChE. Classical enzyme inhibition kinetics data suggested that compounds 2 and 3 were potent inhibitors of AChE and BChE, while 1 was found inactive against both enzymes. The findings from molecular docking studies revealed the competitive and non-competitive inhibition mechanisms of compounds 2 and 3 against both enzymes. Molecular docking and simulations have revealed that hydrogen bonding, mediated by ketone and hydroxyl functionalities in various positions, significantly contributes to the binding of the inhibitor to the receptor. According to MD simulation studies, the stability of the ligand-AChE complex for the most active compound (3) is found to be comparable to that of the widely used drug Tacrine. In addition, to evaluate the drug-likeness of compounds, in silico ADME evaluation was performed, and the compounds presented good ADME profiles. Data suggested that the coumarin nucleus having diverse side chains at the C-8 position can serve as a potential inhibitor of cholinesterases and can act as a lead to develop a new semisynthetic drug for the treatment of AD.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36833679

RESUMO

The food chain, through vegetable consumption, is considered to be an important route of heavy metal exposure. Therefore, in this study, heavy metal concentrations in leafy vegetables grown in the Jazan region of Saudi Arabia were assessed using an ICP-MS. Lettuce, radish, mint, parsley and jarjir (Arugula) were selected for study and subjected to digestion using HCl. The results indicated that the Fe level was highest in all vegetables, while jarjir was the most contaminated vegetable. However, no tested metal exceeded the maximum permissible limits set by the FAO/WHO and European Committee. The possible health hazards associated with the exposure to metal contaminants via vegetable consumption were evaluated by estimating target hazard quotient (THQ) values, and the results revealed that the vegetables grown in close proximity of Jazan city were the most contaminated and those in Darb the least. However, the daily intakes of all the tested metals were well below the corresponding oral reference doses (RfDs), and the THQ values were less than unity, suggesting that the vegetables grown in the studied region were safe and the heavy metal exposure via vegetable consumption was unlikely to cause adverse effects to the local inhabitants of the region.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Verduras , Arábia Saudita , Contaminação de Alimentos/análise , Poluentes do Solo/análise , Medição de Risco , Metais Pesados/análise , Monitoramento Ambiental
13.
Recent Pat Anticancer Drug Discov ; 18(4): 448-469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36305149

RESUMO

BACKGROUND: Gefitinib, a tyrosine kinase inhibitor, is effectively used in the targeted treatment of malignant conditions. It suppresses the signal transduction cascades leading to cell proliferation in the tumors and is now currently approved in several countries globally as secondline and third-line treatment for non-small cell lung cancer (NSCLC). OBJECTIVE: This review is aimed to summarize the journey of gefitinib as an established anticancer drug for the management of various cancers. Moreover, this review will focus on the mechanism of action, established anticancer activities, combination therapy, nanoformulations, as well as recent clinical trials and patents on gefitinib. METHODS: The data for this review was collected from scientific databases such as PubMed, Science Direct, Google Scholar, etc. Recent patents on gefitinib granted in the last two years were collected from databases Patentscope, USPTO, Espacenet, InPASS and Google Patents. Data for the recent clinical trials were obtained from the U.S. National Library of Medicine database. RESULTS: Recent pre-clinical and clinical studies during the period 2015-2021 demonstrating the efficacy of gefitinib were selected and summarized. Total 31 patents were granted in the year 2020-2021 concerning gefitinib. The efficacy of gefitinib against lung cancer, as well as other cancer types, including breast, prostate, colon, cervix etc., was reviewed. CONCLUSION: Gefitinib showed significant advantages in being more effective, safer and more stable, and the associated biopharmaceutical problems are addressed by the application of nanotechnology. The combination therapy using gefitinib and various anticancer molecules of natural and synthetic origin has shown an improved anticancer profile.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Feminino , Humanos , Gefitinibe/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Patentes como Assunto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
14.
Pharmaceutics ; 14(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432708

RESUMO

Background: Quercetin (QCT) is a natural polyphenolic flavonoid showing great potential in the treatment of skin cancer. However, its use is limited owing to its poor water solubility, poor absorption, quick metabolism and excretion, as well as low stability. Preparation of nanoemulgel has been proven to be an effective approach to deliver the drugs topically due to various advantages associated with it. Objectives: This study aimed to prepare stable nanoemulgel of QCT using a Design-of-Experiments (DoE) tool for optimization, to characterize and to assess its in vivo toxicity and efficacy against human cancer cell lines in vitro. Methods: An ultrasonication emulsification method was used for the preparation of QCT-loaded nanoemulsion (QCT@NE). Box-Behnken design was used for the optimization of developed nanoemulgel. Then, in vitro characterization of prepared nanoemulsion was performed using Fourier Transform-Infra Red (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), particle size analysis, determination of zeta potential and entrapment efficiency (%EE). Further, the developed QCT-loaded nanoemulgel (QCT@NG) was characterized in vitro using texture profile analysis, viscosity and pH determination. Eventually, the cell cytotoxicity studies of the prepared nanoemulgel were performed on the skin cancer cell lines A431 followed by an acute toxicity and skin irritation study on male wistar rats in vivo. Results: The developed QCT@NE was found to be nanometric in size (173.1 ± 1.2 nm) with low polydispersity index (0.353 ± 0.13), zeta potential (-36.1 ± 5.9 mV), and showed good %EE (90.26%). The QCT@NG was found to be substantially more effective against the human skin carcinoma (A431) cell lines as compared to plain QCT with IC50 values of 108.5 and 579.0 µM, respectively. Skin irritation study showed no sign of toxicity and ensured safety for topical application. Hematological analysis revealed no significant differences between the treatment and control group in any biochemical parameter. In the nanoemulgel treatment group, there were no discernible differences in the liver enzymes, bilirubin, hemoglobin, total leukocyte and platelet counts as compared to the control group. Conclusions: The optimized QCT@NG was found to be an ideal and promising formulation for the treatment of skin cancer without showing skin irritation and organ toxicity.

15.
Saudi Pharm J ; 30(3): 237-244, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35498225

RESUMO

Khat consumers might use a number of drugs for underlying conditions; however the potential drug-herb interaction between khat and other drugs including Irbesartan (IRB) is unknown. The present study was conducted to evaluate the effects of khat chewing on pharmacokinetic profile of IRB, a commonly available antihypertensive agent. The pharmacokinetic profile of orally administered IRB (15.5 mg/kg) with and without pre-administration of khat (12.4 mg/kg) were determined in Sprague-Dawley rats. IRB was estimated in rat plasma samples using a newly developed HPLC method. The chromatographic separation of the drug and internal standard (IS) was performed on a C-18 column (Raptor C-18, 100 mm × 4.6 mm id.; 5 µm) using a mobile phase consisting of 10 mM ammonium acetate buffer (pH 4.0) and acetonitrile in a ratio 60:40 v/v. Acceptable linearity for IRB was recorded at 1 - 12 µg/mL concentration range (R2 > 0.99). Intra-day and inter-day precision (%RSD = 0.44% - 3.27% and 0.39-1.98% respectively) and accuracy (% recovery = 98.3 - 104.3%) in rat plasma was within the acceptable limit according to USFDA guidelines. The AUC0-t was found to be significantly increased in IRB-khat co-administered rats as compared to rats receiving IRB only; whereas, the Tmax (0.5 h) value remained unchanged. Results of this study revealed that the IRB level considerably increased in rat plasma upon co-administration of khat. This might be due to the inhibition of CYP2D9 by khat which is the principal cytochrome P450 isoform responsible for IRB metabolism.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35571737

RESUMO

Background: CAM is widely accepted for the management of diabetes, and CAM users from many countries showed positive perception towards its use. However, little is known about the perception of individuals with diabetes in Saudi Arabia. Objectives: This study was aimed to assess the perception of the individuals with diabetes of Jazan region in Saudi Arabia towards CAM. Methods: An online, anonymous cross-sectional survey was designed and conducted between September 5 and December 31, 2021. Data were collected using 19-item self-report survey from the individuals with diabetes of the Jazan region. Results: A total of 359 validated responses were received. Approximately, 34% of the participants reported using CAM with modern medicine to control diabetes. Most of the participants reported that CAM is affordable, accessible, acceptable, and effective. Of the study sample, 28% reported using herbal medicine to control diabetes. Significantly, higher percentages of CAM users reported media (42% vs 27%) and friends/family (31% vs 27%) as the primary sources of information about CAM as compared to non-CAM users. Individuals who used CAM for diabetes showed significantly more positive perception (ß = 2.386; p=0.001) than those who did not use CAM in the adjusted analysis. Similarly, students had a significantly higher positive perception towards CAM (ß = 4.121; p=0.013) compared to employed individuals. Conclusion: A quarter of the sample of individuals with diabetes used herbal medicine to control diabetes. Individuals who ever used CAM for diabetes showed positive perception towards CAM. However, there is a need of healthcare workers to be involved in educating the individuals with diabetes and the general public in order to use CAM more effectively and safely.

17.
Molecules ; 27(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35630658

RESUMO

This study was aimed to perform the mechanistic investigations of chalcone scaffold as inhibitors of acetylcholinesterase (AChE) enzyme using molecular docking and molecular dynamics simulation tools. Basic chalcones (C1-C5) were synthesized and their in vitro AChE inhibition was tested. Binding interactions were studied using AutoDock and Surflex-Dock programs, whereas the molecular dynamics simulation studies were performed to check the stability of the ligand-protein complex. Good AChE inhibition (IC50 = 22 ± 2.8 to 37.6 ± 0.75 µM) in correlation with the in silico results (binding energies = -8.55 to -8.14 Kcal/mol) were obtained. The mechanistic studies showed that all of the functionalities present in the chalcone scaffold were involved in binding with the amino acid residues at the binding site through hydrogen bonding, π-π, π-cation, π-sigma, and hydrophobic interactions. Molecular dynamics simulation studies showed the formation of stable complex between the AChE enzyme and C4 ligand.


Assuntos
Chalcona , Chalconas , Acetilcolinesterase/metabolismo , Chalconas/química , Inibidores da Colinesterase/química , Ligantes , Simulação de Acoplamento Molecular
18.
Phytother Res ; 36(5): 2016-2041, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35259776

RESUMO

Propolis, a natural resinous mixture produced by honey bees is poised with diverse biological activities. Owing to the presence of flavonoids, phenolic acids, terpenes, and sesquiterpenes, propolis has garnered versatile applications in pharmaceutical industry. The biopharmaceutical issues associated with propolis often beset its use as being too hydrophobic in nature; it is not absorbed in the body well. To combat the problem, various nanotechnological approaches for the development of novel drug delivery systems are generally applied to improve its bioavailability. This paradigm shift and transition of conventional propolis to nanopropolis are evident from the literature wherein a multitude of studies are available on nanopropolis with improved bioavailability profile. These approaches include preparation of gold nanoparticles, silver nanoparticles, magnetic nanoparticles, liposomes, liquid crystalline formulations, solid lipid nanoparticles, mesoporous silica nanoparticles, etc. Nanopropolis has further been explored to assess the potential benefits of propolis for the development of futuristic useful products such as sunscreens, creams, mouthwashes, toothpastes, and nutritional supplements with improved solubility, bioavailability, and penetration profiles. However, more high-quality clinical studies assessing the effects of propolis either alone or in combination with synthetic drugs as well as natural products are warranted and its safety needs to be firmly established.


Assuntos
Nanopartículas Metálicas , Própole , Animais , Ouro , Lipossomos , Nanopartículas , Própole/farmacologia , Prata
19.
Molecules ; 27(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335159

RESUMO

The present study aimed to develop a local dental nanoemulgel formulation of Nigella sativa oil (NSO) for the treatment of periodontal diseases. NSO purchased from a local market was characterized using a GC-MS technique. A nanoemulsion containing NSO was prepared and incorporated into a methylcellulose gel base to develop the nanoemulgel formulation. The developed formulation was optimized using a Box-Behnken statistical design (quadratic model) with 17 runs. The effects of independent factors, such as water, oil, and polymer concentrations, were studied on two dependent responses, pH and viscosity. The optimized formulation was further evaluated for droplet size, drug release, stability, and antimicrobial efficacy. The developed formulation had a pH of 7.37, viscosity of 2343 cp, and droplet size of 342 ± 36.6 nm. Sustained release of the drug from the gel for up to 8 h was observed, which followed Higuchi release kinetics with non-Fickian diffusion. The developed nanoemulgel formulation showed improved antimicrobial activity compared to the plain NSO. Given the increasing emergence of periodontal diseases and antimicrobial resistance, an effective formulation based on a natural antibacterial agent is warranted as a dental therapeutic agent.


Assuntos
Metilcelulose , Saúde Bucal , Emulsões/química , Óleos de Plantas
20.
Braz. J. Pharm. Sci. (Online) ; 58: e20160, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403723

RESUMO

Abstract Pharmacokinetic studies were carried out in male and female rats to quantify silymarin as silybin (A+B) after the oral administration of various silymarin formulations combined with three bioenhancers, namely, lysergol, piperine, and fulvic acid, and compared with plain silymarin formulation (control). A non-compartmental analysis, model independent analysis, was utilized, and various pharmacokinetic parameters (C max, T max, and AUC 0-t) were calculated individually for each treatment group, and the values were expressed as mean ± SEM (n = 6). Plasma samples obtained from the rats were analyzed for the concentration of silymarin through a validated RP-HPLC method and on the basis of data generated from the pharmacokinetic studies. Results indicated that the bioenhancers augmented pharmacokinetic parameters and bioavailability increased 2.4-14.5-fold in all the formulations compared with the control. The current work envisages the development of an industrially viable product that can be further subjected to clinical trials and scientifically supports the development of silymarin as a contemporary therapeutic agent with enhanced bioavailability and medicinal values.


Assuntos
Animais , Masculino , Feminino , Ratos , Silimarina/análise , Silimarina/agonistas , Ácidos/efeitos adversos , Disponibilidade Biológica , Administração Oral , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...